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ABSTRACT
Code coverage analysis has become a standard approach in software
development, facilitating the assessment of test suite effectiveness,
the identification of under-tested code segments, and the discovery
of performance bottlenecks. When code coverage of software for
embedded systems needs to be measured, conventional approaches
quickly meet their limits. A commonly used approach involves
instrumenting the source files with added code that collects and
dumps coverage information during runtime. This inserted code
usually relies on the existence of an operating and a file system
to dump the collected data. These features are not available for
bare-metal programs that are executed on embedded systems.

To overcome this issue, we present NQC², a plugin for QEMU.
NQC² extracts coverage information from QEMU during runtime
and stores them into a file on the host machine. This approach is
even compatible withmodified QEMU versions and does not require
target-software instrumentation. NQC² outperforms a comparable
approach from Xilinx by up to 8.5 x.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
• Hardware→ Simulation and emulation.
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1 INTRODUCTION
Code coverage analysis is a fundamental practice in software devel-
opment, serving as a reliable tool for assessing the effectiveness of
test suites, identifying under-tested code segments, and pinpointing
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Figure 1: Interaction betweenNQC² andQEMU, involved files,
and used postprocessing tools.

performance bottlenecks. It counts how many times each line of
a software program is executed during program runtime. In 1963,
Miller andMaloney published this idea of code coverage [13], which
became a standard in industry and research nowadays [9, 16].

In practice, code coverage analysis finds application in several
key areas of software development like test coverage analysis [9],
bottleneck detection, and guidance of fuzzers [14]. While code cov-
erage analysis has a pivotal role in standard software development,
its application to the embedded domain causes some challenges.
These challenges arise from the traditional instrumentation-based
approach of code coverage analysis, which involves injecting code
into the target executable before, during, or after compilation to
gather coverage data. This approach introduces language and com-
piler dependencies, alters the executable, and, in many cases, ne-
cessitates the execution of the target software within an Operating
System (OS) to use system calls for dumping the coverage data.

In response to these challenges, this paper introduces an ap-
proach that leverages QEMU [1], an open-source simulation soft-
ware, to enhance code coverage analysis in a non-intrusive and
portable manner. We present the following contributions:

• QEMU-Tiny Code Generator (TCG) plugin NQC²:We
sketch the working principle and implementation details.

• Performance optimization:We reduce the slowdown of
NQC² by merging, buffering, and an asynchronous writer.

• Analysis:Weevaluate the performance of NQC² for different
scenarios showing that we can outperform Xilinx’s QEMU-
based coverage solution by a factor of up to 8.5.

Our approach addresses the limitations of traditional code cover-
age analysis and offers a solution that can be easily used with QEMU
implementations that contain custom modifications. The proposed
toolflow is depicted in Fig. 1. Our QEMU-TCG plugin NQC² can
be loaded by QEMU during runtime. While QEMU executes the
target software, it passes information of the executed code to NQC².
The plugin stores the collected data in an Execution Log (elog)
file. This elog file can be processed together with the debugging-
symbol-containing Executable and Linkable Format (ELF) file of
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the executed target software to generate an lcov coverage report.
To visualize this report, the genHTML [10] tool can be used.

2 BACKGROUND AND RELATEDWORK
Code coverage analysis is nowadays an established tool in indus-
try [9] that has been used since the late 1960s [16]. It measures how
often a line of a program is executed during runtime. This informa-
tion is a valuable insight to the programmer revealing which parts
of the software are tested by a testing suite or pinpointing where
the performance bottlenecks are. The collected information can be
also used by further approaches like fuzzing [14] as guidance.

Coverage data are collected during runtime. A common approach
is the instrumentation of the software before, during or after com-
pilation. An overview of available code coverage tools is presented
in Table 1. Modern C/C++ compilers like the GNU Compiler Col-
lection (GCC) or clang have integrated support for coverage instru-
mentation during compilation. They use gcov [6] and llvm-cov [11],
respectly, to instrument the code. During execution, the instrumen-
tations capture the coverage information and store it in a file. The
produced output can be converted into a coverage report. Usually,
graphical tools are available that create reports that, e.g., display the
source code together with the annotation of line-execution counts.
This facilitates the evaluation. One of those tools is genHTML of the
lcov project [10]. It creates a HTML-based report. Besides C/C++,
coverage tools are available for many different languages.

When it comes to coverage analysis for embedded software, ad-
ditional challenges arise. Especially for the instrumentation-based
approach, standard tools like gcov can only be used if the target
software is executed within an OS. This is a requirement because
the instrumented code depends on system calls such as creating and
writing to the file that stores the collected data. When analyzing
the code coverage of bare-metal software, these system calls do not
function due to the absence of a file system and OS. To circumvent
this issue, embedded-gcov from the NASA Jet Propulsion Labora-
tory [15] and the approach by Blasum et al. [3] suggest to directly
dump the coverage information into the memory of the embedded
target. After execution, the dump needs to be extracted from the
target and stored on a host machine to be analyzed.

The drawbacks of the instrumentation-based approach are that
it is programming-language-dependent and changes the target soft-
ware. By adding instrumentations to the target software, the binary
that is executed when coverage information is collected differs from
the one that is executed during normal operation. This fact can lead
to different behavior due to a changed memory layout and added
instructions. The second limitation appears when instrumentations

Table 1: Code Coverage Approaches.

Approach Non-
Intrusive

Independencies Stand-
aloneLanguage OS

gcov [6] Times-Circle Times-Circle Times-Circle Check-circle
llvm-cov [11] Times-Circle Times-Circle Times-Circle Check-circle
embedded-gcov [15] Times-Circle Times-Circle Check-circle Check-circle
Blasum et al. [3] Times-Circle Times-Circle Check-circle Check-circle
Xilinx’s QEMU [21] Check-circle Check-circle Check-circle Times-Circle

NQC² (this work) Check-circle Check-circle Check-circle Check-circle

are added by the compiler. Although it is possible to add instrumen-
tations after compilation [2], most state-of-the-art tools like gcov
instrument the code before compilation. This limits the usage of
those tools to the specific language they have been developed for.

To overcome this issue, Virtual Platforms (VPs) can be used. A
VP is a software-based simulator that mimics the behavior of a
full System-on-a-Chip (SoC). It can be used to develop, run, and
analyze the unmodified target software on a host machine like an
x86 general-purpose PC. The instructions of the target program,
which have been compiled for the target Instruction-Set Archi-
tecture (ISA), are executed by the Instruction-Set Simulator (ISS),
which is part of the CPU model of the VP. Modern Dynamic Binary
Translation (DBT)-based ISSs translate Basic Blocks (BBs), which
are groups of coherent instructions without branching, from the
target ISA to the host ISA. Those translated BBs are referred to as
Translation Blocks (TBs). TBs can be cached by the simulator so
the translation is only needed once per TB. When the same TB is
executed a second time, the cached version can be used.

Awidely-used VP that has an DBT-based ISS is QEMU [1]. QEMU
can simulate several target architectures and run on different simu-
lation hosts. Its internal ISS is called TCG. QEMU can be modified to
capture tracing data during execution. This has been done by Xilinx
in their QEMU fork [21]. Xilinx added a feature called Execution
Trace (etrace) to their QEMU version, which collects traces from
the TCG during execution.These traces are dumped into an elog file
on the host machine, which can be converted to a lcov file by the
qemu-etrace tool [8]. The strength of this approach is that the target
software does not need to be instrumented. There is no dependency
on the compiler or used language and no recompilation is needed
for the analysis. However, the drawback is that Xilinx’s solution
requires running QEMU with disabled TB chaining. TB chaining is
an optimization technique that allows the execution of multiple TBs
without switching back to QEMU’s main loop in between. When
this feature is disabled, the simulation performance is reduced.

Another drawback is the reliance on Xilinx’s customized QEMU
fork. When the main QEMU branch receives updates and new
features, there can be a significant delay before these changes are
incorporated into Xilinx’s version. As of 2023, there are more than
5,000 forks of the QEMUGitHub repository [17], indicating a strong
community interest in enhancing and adapting QEMU to specific
requirements. Given etrace’s deep integration with Xilinx’s QEMU,
the ability to reuse this feature in other versions is challenging.

To address the issue of portability, QEMU’s TCG has a plugin
feature that has been introduced in version 4.2 [5]. A TCG plugin
is a shared library that can be loaded by QEMU at runtime. During
this process, QEMU invokes the qemu_plugin_install function of
the plugin, which enables the plugin to register callback functions.
A comprehensive overview of the plugin Application Programming
Interface (API) can be found in [18]. Importantly, plugins can be
employed across various QEMU implementations, ensuring their
reusability even when QEMU has undergone alterations or exten-
sions. In contrast to intrusive modifications of QEMU, this feature
enables the portability of extensions.
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Figure 2: The elog file structure.

3 IMPLEMENTATION
NQC² is a TCG plugin for QEMU that leverages the capabilities of
the plugin API to generate an elog file. This file serves as the foun-
dation for processing by existing tools and facilitates the generation
of a comprehensive coverage report as depicted in Fig. 1.

The elog file is a binary data file that exhibits a structured layout
composed of concatenated blocks as illustrated in Fig. 2. Each block
comprises two main components, a header and a data segment. The
structure of the header, depicted in Code 1, determines the type and
length of the subsequent data segment. Each data segment type has
its own defined structure.

1 struct etrace_hdr {

2 uint16_t type; // type of the subsequent data

3 uint16_t unit_id; // CPU ID

4 uint32_t len; // length of the subsequent data

5 } __attribute__ (( packed));

Code 1: etrace header struct.

Of particular significance for the coverage evaluation is the entry
type presented in Code 2. For an executed TB, the etrace_entry64
struct stores the start and end addresses of the executed instruc-
tions within the target’s address space and the execution duration
in nanoseconds. To enhance the organization and manageabil-
ity of the data, multiple etrace_entry64 blocks can be grouped
into an execution-data block as visually depicted in Fig. 2. The
len attribute of the etrace_hdr defines the accumulated sizes
of both the etrace_exec and the etrace_entry64 entries. Dur-
ing runtime, NQC² collects the data from QEMU, stores them in
etrace_entry64 structs and dumps them to the elog file.

1 struct etrace_exec { // type = 1

2 uint64_t start_time; // timestamp of first TB exec

3 } __attribute__ (( packed));

5 struct etrace_entry64 {

6 uint32_t duration; // execution duration (ns)

7 uint64_t start , end; // start & end addresses

8 } __attribute__ (( packed));

Code 2: Entry for an executed TB.

Fig. 3 visualizes how and when NQC² interacts with QEMU. After
the plugin has been loaded by QEMU, the qemu_plugin_install

• Create & open elog file
• Start flusher thread
• Register callbacks

• Calc start & end addresses
• Register callback

• Store TB data in buffer

• Flush buffer
• Close elog file

NQC²QEMU

qemu_plugin_install
vcpu_tb_trans_cb

at_exit_cb

vcpu_tb_trans
vcpu_tb_exec_cb

vcpu_tb_exec

at_exit

Figure 3: NQC² schema.

function is called. NQC² then creates an elog file, opens it for writing,
and dumps configuration blocks containing version and architec-
ture information. An asynchronous writer function is executed in
a new POSIX Thread (pthread) which is from then on used to write
data to the elog file.This performance optimization will be discussed
in detail in Section 3.1. At the end of the qemu_plugin_install
function, two callback functions are registered using QEMU’s TCG-
plugin API. The first callback function, vcpu_tb_trans, notifies
NQC² when the TCG translates a new BB. The second callback
function, at_exit, is executed once a virtual CPU (vCPU) exits.

Every time the TCG translates a BB, the vcpu_tb_trans func-
tion is called. In this function, the addresses of the first and last
instructions of the TB are calculated and stored in a struct. A third
callback function, vcpu_tb_exec, is registered to be called every
time the TB is executed. During the registration, a pointer to the
struct containing the start and end addresses of the TB is handed
over. This pointer is then passed to every call of vcpu_tb_exec.

After each execution of a TB, the start and end addresses of the
TB are extracted from the handed-over struct in the vcpu_tb_exec
function.The information is copied to an etrace_entry64 struct as
shown in Code 2. The etrace_entry64 struct is placed in a buffer.
Once the buffer is full, the collected etrace_entry64 structs are
written to the elog file with a preceding header, as depicted in
Code 1, and an etrace_exec block, as presented in Code 2.

When a vCPU exits at the end of the simulation, the remaining
etrace_entry64 structs from the buffer are written to the elog file.
The file is then closed. It can be post-processed using the QEMU-
etrace tool [8] to generate a lcov coverage report as shown in Fig. 1.

The etrace_entry64 structs are collected in a buffer before they
are written to the elog file. Buffering the blocks before writing them
into the elog file reduces the file size by grouping blocks according
to Fig. 2. Thereby, the number of required headers is reduced. The
size of the elog file, (4;>6 , can be calculated according to Eq. (1).

(4;>6 = (2>=5 + #)�
�1D5

·
(
(ℎ3A + (4G42 + �1D5 · (4=CA~64

)
(1)

= 124 B + #)�
�1D5

·
(
16 B + �1D5 · 20 B

)
(2)

≈ #)�
�1D5

·
(
16 B + �1D5 · 20 B

)
(3)
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Figure 4: Reduction of the elog file size due to buffering.

The size (4;>6 is composed of a constant amount (2>=5 which
is caused by the version and architecture information that is writ-
ten once at the beginning. The workload-dependent amount is
determined by the number of executed TBs (#)�), the sizes of
the etrace_hdr ((ℎ3A ), etrace_exec ((4G42 ), and etrace_entry64
((4=CA~64) structs, and the numer of etrace_entry64 structs that
fit into the buffer (�1D5 ). Since the constant part is relatively small
and thereby negligible, the equation can be simplified to Eq. (3).

To estimate the influence of buffering on the elog file size, the
ratio of the elog file size with buffering, (4;>6 , to the elog file size
without buffering, (4;>6 (�1D5 = 1), can be calculated according to
Eq. (4). The resulting relative reduction of the file size is plotted in
Fig. 4. It shows that buffering and bundling of the etrace_entry64
structs can reduce the file size of the elog file by up to 44 %. If only
32 elements are bundled, the file size is already reduced by 43 %.
Further bundling has only a limited influence on the file size.

3.1 Multi-buffering
The buffering and bundling of etrace_entry64 entries serve a dual
purpose, benefiting not only in the reduction of the elog file size but
also in enhancing performance-optimization possibilities. When
the buffer is full, the contained data need to be written to the elog
file. While this is done, QEMU is suspended which reduces the per-
formance. To circumvent this issue, we suggest the implementation
of an asynchronous writer pthread together with multiple buffers.

The concept is sketched in Fig. 5 for four buffers. Instead of
a single buffer that is filled and flushed once it is full, we have
multiple buffers. A state is assigned to each buffer which can either
be empty, filling, full, or flushing. During the initialization of NQC²,
an asynchronous writer pthread is spawned (see Fig. 3). Each buffer
can be accessed from two different pthreads, the writer or the main
NQC² pthread, called collector in the following. At the beginning, all
buffers are empty. The collector changes the state of the first buffer
to filling. It adds etrace_entry64 structs to the buffer until it is
full. Then it changes the state to full. Once the next buffer is in the
empty state, the collector changes the state to filling and continues.
If the next buffer is in the full or flushing state, the collector needs
to wait until the state is changed to empty by the writer.

The writer runs in parallel to the collector in the asynchronous p-
thread. At the beginning of the simulation, it waits until the collector
changes the state of the first buffer to full. Then the writer updates
the state to flushing, flushes the data into the elog file and sets the
state to empty. It waits until the collector changes the state of the
next buffer to full before it continues writing data to the elog file.

The waiting of the collector for an empty and the writer for a
full buffer is synchronized using POSIX condition variables. Every
time a state is changed from flushing to empty or from filling to

Buffer 0 Buffer 1 Buffer 2 Buffer 3

Buffer Pool

Async
Writer FILE-ALT

elog

vcpu_tb_exec

(Collector)

Buffer States
empty
filling
full
flushing

Figure 5: NQC² multi-buffering schema.
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Figure 6: QEMU execution statistics.

full, a condition variable is notified to alert the potentially waiting
collector or writer.

3.2 Merging
NQC² includes the merging of etrace_entry64 structs as a second
optimization. In the vcpu_tb_exec callback, before adding a new
entry to the buffer, it is checked whether the buffer is empty. If that
is not the case, the end address of the last element in the buffer and
the start address of the executed TB are compared. In the case of a
match, the last entry in the buffer can be updated instead of adding
a new entry to the buffer. This is done by setting the end address
of the last entry to the end address of the current entry. If timing
is annotated, the execution duration of the current TB needs to be
added to the duration field of the updated entry.

4 RESULTS
To measure the slowdown of NQC², we assess the code coverage
of the widely-used bare-metal benchmarks Coremark [7], Dhry-
stone [19], Stream [12], and Whetstone [20]. All benchmarks are
evaluated on QEMU version 8.1.1 [17] with and without NQC² en-
abled, and Xilinx’s QEMU fork version 2023.1_update1 [21]. The
simulated target architecture is aarch64. The used host CPU is an
AMD Ryzen 9 3900X 12-core processor. When NQC² is loaded,
the number of buffers, the number of etrace_entry64 structs per
buffer, and the merging option can be configured.

Fig. 6 shows general properties of the benchmarks and the execu-
tion by QEMU that are independent of the code coverage analysis.
Fig. 6a depicts the simulation speed of QEMU for the different bench-
marks measured in Million Instructions Per Second (MIPS). It can be
seen that the reached simulation speeds differ for the benchmarks.
Coremark and Dhrystone reach the highest simulation speeds. One
reason for the high simulation speed is that both benchmarks are
dominated by simple integer-arithmetic-based instructions [4]. The
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Figure 7: NQC² benchmark results.

higher execution speed for Coremark is caused by the lower amount
of load instructions compared to Dhrystone. Stream mainly uses
load and store instructions, which causes a higher slowdown. Whet-
stone consists of many floating point operations, which are more
complex to simulate than integer operations.

Furthermore, Fig. 6a shows the probability that a TB needs to be
translated before execution. Since QEMU buffers translated TBs, the
probability that a TB has been translated in the past and can directly
be executed is above 99.9 % for all tested benchmarks. However, the
TB-translation probability of Whetstone is more than 6.4 x higher
than the one of Coremark. A lower TB probability can lead to a
higher performance of QEMU due to the reduced translations.

Fig. 6b shows how often subsequent etrace_entry64 blocks
can be merged (cf. Section 3.2). For example, 124,257,227 of the total
295,290,670 etrace_entry64 blocks (42.08 %) that need to be stored
for a Coremark execution can be merged with their predecessor. In
contrast, for the Stream benchmark, merging can only be applied
to 10,481 of the 55,024,880 etrace_entry64 blocks (0.02 %).

Fig. 7a shows the runtime slowdowns NQC² and Xilinx’s QEMU
with enabled etrace cause compared to QEMU 8.1.1. Since the buffer
count, buffer size, and merging can be configured for NQC² and
influence the performance, the minimum and maximum values
that can be achieved are shown. The evaluated number of buffers
is between 1 and 16, the buffers can fit between 512 and 65,536
etrace_entry64 elements, and merging is enabled or disabled.

While Xilinx’s etrace implementation causes enormous slow-
downs by a factor of 28.2 for the Coremark benchmark (Fig. 7a),
the slowdown of NQC² can be reduced to a maximum factor of 3.3
for all evaluated benchmarks. For the Coremark benchmark, NQC²
outperforms Xilinx’s solution by 8.5 x. A reason for the better per-
formance of NQC² is that Xilinx’s etrace implementation requires
disabled TB block chaining to work. Furthermore, NQC² has, in
contrast to Xilinx’s implementation, multi-buffering and variable
buffer-size capabilities. Xilinx uses a single buffer that can fit 16,384
etrace_entry64 elements. They use a single pthread.

Theworst-case slowdown of NQC² exhibits a notable dependency
on the executed workload. When we compare the trends depicted
in Figs. 6a and 7a, a consistent pattern emerges in the course of
MIPS values and the resulting slowdown. It seems that NQC² in-
troduces a higher slowdown when it is used with workloads that
can be executed with high MIPS values by QEMU. Tuning buffer
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Figure 8: NQC² slowdown.

parameters and merge options can help to limit the slowdown. For
the best-case scenario, NQC² always outperforms Xilinx’s etrace.

Fig. 7b shows the file size of the elog file for enabled and disabled
merging. According to Eq. (4), the file size also depends on the used
buffer size. However, for the evaluated buffer sizes, which are larger
than or equal to 512 , the buffer size has a neglectable impact as
shown in Fig. 4. Hence, this dependency is not further evaluated. It
can be seen that the elog files can rapidly grow tomultiple gigabytes.
Merging helps to reduce the file size but the effectiveness depends
on the workload. The impact of merging directly corresponds to
the proportion of etrace_entry64 blocks that can be merged as
depicted in Fig. 6b. Benchmarks that have a high probability that
blocks can be merged, like Coremark and Dhrystone, can benefit
from merging. Merging cannot reduce the file size for benchmarks
with few mergeable blocks, such as Stream.

Fig. 8 shows the ratio of the needed execution time with enabled
NQC², C#&�2 , to the one without NQC², C&�"* , for the different
benchmarks and configurations. When only a single buffer is used
(blue lines), the collector and writer cannot work in parallel which
leads to a sequential behavior and thereby an extensive slowdown.
The results of the Stream and Whetstone benchmarks show that
the asynchronous writer combined with multi-buffering drastically
improves performance. For those benchmarks, the gap between the
blue and the other lines is the largest. An explanation for the larger
influence observed for those particular benchmarks can once again
be gleaned from the data presented in Fig. 6a. Workloads that reach
a lower MIPS number, like Stream and Whetstone, benefit the most
from parallel buffer filling and flushing. For those workloads, the
execution performed by QEMU takes longer which leads to less
frequent calls to NQC². Less frequent calls result in more time for
the writer to empty a full buffer which reduces buffer congestion.

This explanation is underlined by Fig. 9, which demonstrates
the impact of various buffer and merge configurations on buffer
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Figure 9: NQC² buffer congestion.

congestion. It shows how often all available buffers are full, so the
collector needs to wait for the writer to empty a buffer. Merging, as
indicated in Fig. 6b, helps to reduce the congestion by decreasing
the number of entries that need to be stored in the elog file.

In a single-buffer setup, the collector and writer cannot work in
parallel, leading to waiting every time a buffer is full. Larger buffer
sizes consistently reduce the number of filled buffers as reflected
by the linear slope of the blue graphs. Increasing the number of
buffers or the buffer size typically reduces the congestion proba-
bility. However, Fig. 9 shows that larger buffer sizes may increase
the congestion probability for some workloads. This can be caused
by the different points in time at which the buffers are emptied
based on the used size. Another reason is that larger buffers reduce
the swapping overhead of the collector which lowers the amount
of time the writer has to flush a buffer without congestion. How-
ever, this slightly increased congestion probability does not lead
to reduced performance as shown in Fig. 8. When the congestion
probability reaches zero, further increases in the buffer sizes no
longer affect the performance, as a comparison between Figs. 8
and 9 shows.

5 CONCLUSION AND FUTUREWORK
In the realm of software development, code coverage analysis is an
essential practice that empowers developers to evaluate the effec-
tiveness of their test suites, pinpoint untested code segments, and
reveal performance bottlenecks. We present NQC², a QEMU-TCG
plugin that enables instrumentation-free code coverage analysis for
embedded software. Through the use of QEMU’s plugin interface,
NQC² is also compatible with customized QEMU versions. We pre-
sented the working principle, the structure of the elog file format
and the integration into a TCG plugin. Our performance optimiza-
tions, such as an asynchronous writer, the usage of multiple buffers,
and the merging of blocks, can significantly reduce the slowdown.

We evaluated the performance of NQC² using several bench-
marks. It has been seen that the slowdown of NQC² highly depends
on the executed workload. For benchmarks that reach a high simu-
lation speed in terms of MIPS, the relative slowdown is higher. An
asynchronous writer can noticeably reduce the slowdown, espe-
cially for benchmarks that reach lower MIPS values. Depending on
the TB-execution order of the workload, the merging of entries can
reduce the elog file size and can increase the performance.

In future work, on-the-fly compression of the elog file before
writing or direct processing can be added to NQC² to reduce the

elog file size. In summary, NQC² presents a versatile solution for
code coverage analysis in diverse QEMU implementations, with
improved performance and a deeper understanding of the factors
influencing its efficiency.
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